resolutionmini

 

 

 

haut de page

 

 

mise à jour du
1 avril 2004
Brain Res
1978;151:479-506
lexique
Messages convey by spino-cerebellar pathways during scratching in the cat
Arshavsky YI. et al

Belozersky Interfaculty Laboratory Moscow State University, and Institute of Problems of Information Transmission, Academy of Sciences, Moscow (USSR)

 
La parakinésie brachiale oscitante Walusinski, Quoirin, Neau
Hand up! Yawn and Raise Your Arm
Walusinski O, Neau JP, Bogousslavsky J.
Involuntary arm elevation during yawning in a hemiplegic patient
Na-Yeon Jung ,Bo-Young Ahn et al.

Chat-logomini

I. ACTIVITY OF NEURONS OF THE LATERAL RETICULAR NUCLEUS
(1) Signals transmitted to the cerebellum by the spino-reticulocerebellar pathway (SRCP) during scratching were studied. For this purpose, the activity of neurons of the lateral reticular nucleus (LRN), which are the last-order neurons of the SRCP, was recorded during scratching in thalamic cats. Scratching was evoked by stimulation of the pinna. LRN neurons were identified antidromically by stimulation of the hindlimb area in the cerebellar anterior lobe. In most experiments, animals were immobilized with Flaxedil, and stimulation of the pinna resulted in fictitious scratching, i.e., in periodical reciprocal activity of flexor and extensor motoneurons typical of actual scratching.
 
(2) During both actual and fictitious scratching, the discharge frequency of LRN neurons was rhythmically modulated in relation with the scratch cycle. Most LRN neurons fired in short high-frequency bursts of spikes which coincided (completely or partly) with the extensor phase of the cycle. In this respect the SRCP differs from the ventral spinocerebellar tract (VSCT) which is maximally active in the flexor phase of the cycle.
 
(3) The firing pattern of LRN neurons during fictitious scratching was similar to that during actual scratching. Therefore, the rhythmical burst firing of LRN neurons is determined mainly by the central mechanisms and not by the rhythmical sensory input.
 
(4) Rhythmical modulation of LRN neurons disappeared after transection of the ipsilateral lateral funiculus of the spinal cord in which spinoreticular libers are located. On the other hand, considerable reduction of rhythmical activity in descending brainstem-spinal pathways after contralateral hemisection of the spinal cord did not affect the discharge pattern of LRN neurons. These two facts indicate that the SRCP conveys mainly messages about activity of the central spinal mechanisms, and that influences of supraspinal motor centers on LRN neurons and on spinoreticular neurons are of minor importance.
 
(5) Axonal terminations of LRN neurons are distributed rather evenly over the hindlimb area in the anterior lobe of the cerebellum. Therefore, messages about the events, which happen within the spinal cord in the vicinity of the extensor phase of the cycle, arrive at every point of the hindlimb area.
 
II ACTIVITY OF NEURONS OF THE VENTRAL SPINOCEREBELLAR TRACT
(1) The activity of neurons of the ventral spinocerebellar tract (VSCT) during scratching was studied in thalamic and decapitate cats. The neurons were identified antidromically either by stimulation of the hindlimb area in the anterior lobe of the cerebellurn (in thalamic cats) or by stimulation of the contralateral ventrolateral funiculus of the spinal cord (in decapitate cats). The scratch reflex was elicited by stimulation of either the pinna (in thalamic cats) or the cervical spinal cord (in decapitate cats). In most experiments, animals were immobilized and the activity of VSCT neurons was recorded during fictitious scratching.
 
(2) During both actual and fictitious scratching, the discharge of VSCT neurons was rhythmically modulated in relation with the scratch cycle: neurons fired in bursts separated with periods of silence. Phases of activity of different neurons were unevenly distributed over the scratch cycle: most neurons fired within the limits of the flexor phase of the cycle.
 
(3) The firing pattern of VSCT neurons during fictitious scratching was similar to that during actual scratching. Therefore, rhythmical burst firing of VSCT neurons is determined mainly by central mechanisms and not by a rhythmical sensory input.
 
(4) The firing pattern of VSCT neurons in decapitate cats was similar to that in thalamic cats. Therefore, rhythmical burst firing of VSCT neurons is determined mainly by the central spinal mechanism and not by supraspinal motor centers.
 
(5) The VSCT neurons which fired in long bursts during the greater part of the flexor phase were usually activated during the latent period of scratching, while those firing later in the cycle were usually either inhibited or not affected during this period.
 
(6) The antidromic response in most VSCT neurons could be evoked from a large number of points in the hindlimb area of the cerebellar anterior lobe, both in the vermis and in the pars intermedia. Due to such extensive branching of axons, each point of the cortex receives signals from neurons firing in different phases of the cycle. But axons of VSCT neurons firing in long bursts during the greater part of the flexor phase terminate more extensively in the pars intermedia, while axons of neurons firing later in the cycle terminate more extensively in the vermis.

(7) The functioning of the VSCT is essentially similar to that of the spinoreticulocerebellar pathway (SRCP)5. Both pathways convey messages about activity of the central spinal mechanism generating the motor output pattern of scratching, but the VSCT is active mainly in the flexor phase of the scratch cycle and the SRCP in the extensor one. A hypothesis is advanced that these pathways monitor activity of different groups of spinal interneurons.

 
Abercrombie J, Gendrin A Des maladies de l'encéphale et de la moelle épinière Germer-Baillière 1835
Abercrombie J Yawning and apoplexy Medical Times and Gazette 1863;1:656-661
Bauer G. et al Involuntary motor phenomena in the locked in syndrome J Neurology 1980;223;:91-198
Bertolotti M. Etude sur la pandiculation automatique des hémiplégiques Rev Neurol 1905;2(19): 953-959
Blin O, Rasol O, Azulay JP, Serratrice G. A single report of an hemiplegic arm stretching related to yawning J Neuro Sci 1994;126:225-227
Brissaud E, Pinard, A, Reclus P Pratique médico-chirurgicale Hémiplégie par A Souques Masson 1907, p538-539
Brissaud E Leçons sur les maladies nerveuses Masson 1895, p458
Darwin E. Zoonomia 1801
de Buck Classification des mouvements anormaux associés à l'hémiplégie Rev Neurol 1899;6:361-365
Furtado D. Provocation spinale d'un réflexe de bâillement. Rev d'oto neuro ophtalmologie.1951;23(1):
Ghika J., Bogousslavsky J. Dissociated preservation of automatic-voluntary jaw movements in a patient with biopercular and unilateral pontine infarcts Eur Neurol 2003;50:185-188
Heusner A P Yawning and associated phenomena Physiological Review 1946;25:156-168
Klippel M et Monier-Vinard R. Hémiplégie flaccide. Nouveau Traité de Médecine. Masson. 1928 p 316
Lanari A., Delbono O. The yawning and stretching sign in hemiplegics Medicina (B Aires) 1983;43(3):355-35
Liecey Nouvelle observation de bâillement convulsif périodique Le Courrier Médical 1879;29;334-336
Liégey Deux observations de bâillements intermittents Gazette médicale de Strasbourg 1851; p118-119
Louwerse E Forced yawning as a pseudobulbar sign in amyotrophic lateral sclerosis J Neuroscience Research 1998, sup, 392
Mulley G. Assoctiated reactions in the hemiplegic arm Scand J Rehab Med 1982;14:117-120
Ogle JW. Arm rising during yawning The Medical Times and Gazette. 28 february 1863 p 213
Pierre Marie La Pratique Neurologique Hémiplégie, mouvements associés Masson 1911, p477-480
Pierre Marie et Léri A. Mouvements involontaires dans les membres paralysés 1911 Nouveau Traité de médecine et de thérapeutique Brouardel, Gilbert, Thoinot JB Baillière Ed 1911 p283-291
Purves-Stewart J. Le diagnostic des maladies nerveuses 1939
Quoirin E. Elévation involontaire du membre supérieur chez l'hémiplégique lors d'un bâillement Thèse doctorat en médecine Poitiers 2002
Thomson HC Associated movements in hemiplegia : their origin and physiological significance Brain 1903;26:515-523
Töpper R, Mull M, Nacimento W Involuntary stretching during yawning in patients with pyramidal tract lesions: further evidence for the existence of an independent emotional motor system European J Neurology 2003;10:495-499
Trautmann R. Le bâillement Thèse Bordeaux; 1901-02; N° 40; 86 pages
Vulpian A Leçons sur la physiologie générale et comparée du système nerveux faites au Museum d'histoire naturelle. Rédigées par E.Brémond. Paris, Baillière, 1866
Vulpian A Maladies du système nerveux Paris, Doin, 1879
Walshe FMR  On certain tonic or postural reflexes in hemiplegia with special reference to the so called "associated movements".   Brain, 1923;46:1-37
Wimalaratna HS, Capildeo R. Is yawning a brainstem phenomenon ? a stroke patient who stretched his hemiplegic arm during yawning Lancet 1988;1(8580):300